

The DRS Interferometric Displacement Sensor

Andreas Kuhnert

Jet Propulsion Laboratory

California Institute of Technology Pasadena, CA,

USA

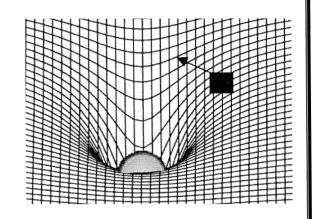
Elba 2002, Gravitational Wave Advanced Detector Workshop, May 19-26, 2002

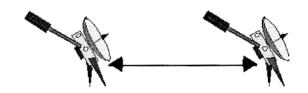
Disturbance Reduction System

• Technology validation of sensor and thrust-producing technologies to control a space vehicles flight path so the payload responds only to gravitational forces.

Sensor: Stanford University, Stanford, CA

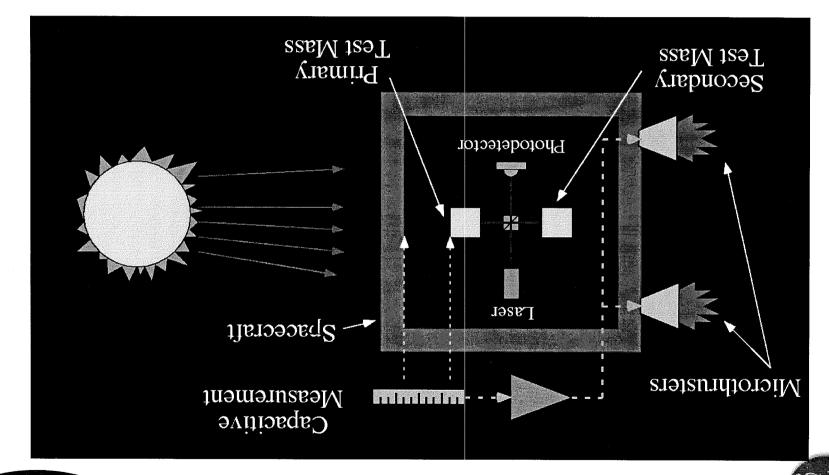
Thruster: Busek Company Inc. Natick, Mass.


- Launch 2006 as NASA's Space Technology 7 project (ST7)
 - Piggy-backing on ESA's SMART-2 Mission



DRS Technology Objectives

- Validate that a test mass follows a trajectory determined by gravitational forces only within $3x10^{-14}$ m/s²/ $\sqrt{\text{Hz}}$
 - Low acceleration noise is needed for study of general relativity, planetary gravity, gravitational waves



- Validate spacecraft position control to an accuracy of $<10 \text{ nm/}\sqrt{\text{Hz}}$
 - Spacecraft position control is required for separated-spacecraft interferometers which do not use internal delay lines

GMN

DRS Concept

- The DRS instrument package consists of
- Two gravitational reference sensors
- Microthrusters for spacecraft position control
- Interferometer to measure the distance between the two test masses.

DRS Technologies

- Gravitational Reference Sensors
 - Test mass noise $< 3x10^{-14}$ m/s²/ $\sqrt{\text{Hz}}$, 1 mHz to 10 mHz
 - Measurement of position to $< 3 \text{ nm/}\sqrt{\text{Hz}}$, 1 mHz to 10 mHz
 - Accelerometer mode
 - Validation of thrusters
 - Force noise diagnostics
 - Validate noise models
- Micro-Newton Thrusters
 - $-1-20 \mu N$ range
 - Control precision adjustment $< 0.1 \mu N$
 - Noise $< 0.1 \,\mu\text{N}/\sqrt{\text{Hz}}$, 1 mHz to 10 mHz
- Interferometer is not a new technology
 - Can be completely tested on ground
 - Is used in DRS for validation only I.e. independent (out-of-loop) detector

Flight Validation Rationale

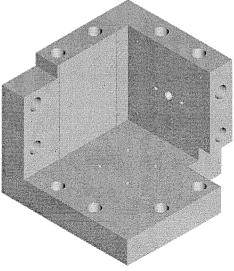
- Must be validated in space
 - 1 g environment on Earth makes ground testing impossible
- Must be in orbit far from Earth
 - Difference in gravitational force on two test masses must be small to validate instrument performance
 - Requires orbit at GEO altitude or higher
- Must have mechanically, thermally stable environment
 - Spacecraft must be in constant orientation during DRS tests
 - Thermal isolation system needed for DRS
 - Spacecraft eclipses need to be avoided
- ESA SMART-2 spacecraft suitable host
 - Will operate ~ 0.1 AU from Earth

Flight Activities

- DRS operations will take 90 days
 - DRS operates only at specific times
 - Spacecraft needs to be in quiet state
 - No maneuvers
 - No moving parts
 - No changes in power dissipation
 - Spacecraft will establish a nominal orientation and dead band
 - DRS should maintain orientation
 - If orientation dead band exceeded, DRS will be shut off
 - DRS tests will consist of a series of experiments of 1-3 days each
 - Experiments can be scheduled non-consecutively
 - Experiments can be repeated if necessary

Flight Validation Measurements

- GRS in accelerometer mode validate thruster performance
 - Can use two GRS to compare calibrations
 - Initial thruster calibration to be used for setting spacecraft control parameters
 - Calibration will be repeated several times over 6 months to check stability
- Fire thrusters to center spacecraft on one GRS test mass
 - GRS position measurements used for control and validation
 - Interferometer readout cross-checks GRS in one direction
- Fire thrusters to orient spacecraft around two test masses
 - GRS position measurements used for control and validation
- Verify acceleration noise on test masses
 - Laser interferometer compares acceleration of two test masses
- Verify force noise model verification
 - Apply known perturbations to see that response is as predicted



GRS Description

- GRS consists of;
 - A freely-floating test mass within a housing,
 - Position measurement of the test mass w.r.t. housing
 - Control of test mass orientation
 - Charge control subsystem
- The proof mass must be isolated from;
 - Solar magnetic field
 - Solar radiation pressure
 - Residual gas pressure
 - Thermal radiation pressure
 - Charging by cosmic rays
 - Spacecraft self-gravity
 - Spacecraft magnetic fields
 - Spacecraft electric fields

GRS Test Mass

GRS Housing Assembly

GRS Requirements

ITEM	REQUIREMENT
Sensitive Axis Acceleration Noise	$3 \times 10^{-14} \text{ m/s}^2/\sqrt{\text{Hz}}$
Trans. Axis Acceleration Noise None	
Sensitive Axis Position Sensitivity	10 x 10 ⁻⁹ m/√Hz
Trans. Axis Position Sensitivity	2.5 x 10 ⁻⁶ m/√Hz
Orientation Control Noise	1 x 10 ⁻⁶ rad/√Hz

DRS Performance Limits

• LISA requirement @ 1 mHz:

 $3*10^{-15} \text{ m/s}^2/\sqrt{\text{Hz}}$

• Proof mass sensor noise:

 $1 \text{ nm}/\sqrt{\text{Hz}}$

• Interferometer noise @ 1 mHz;

 $500 \text{ pm/}\sqrt{\text{Hz}}$

• DRS goal @ 1 mHz:

 $3*10^{-14} \text{ m/s}^2/\sqrt{\text{Hz}}$

• LISA requirement @ 10 mHz:

 $1.5*10^{-14} \text{ m/s}^2/\sqrt{\text{Hz}}$

• Interferometer noise @ 10 mHz:

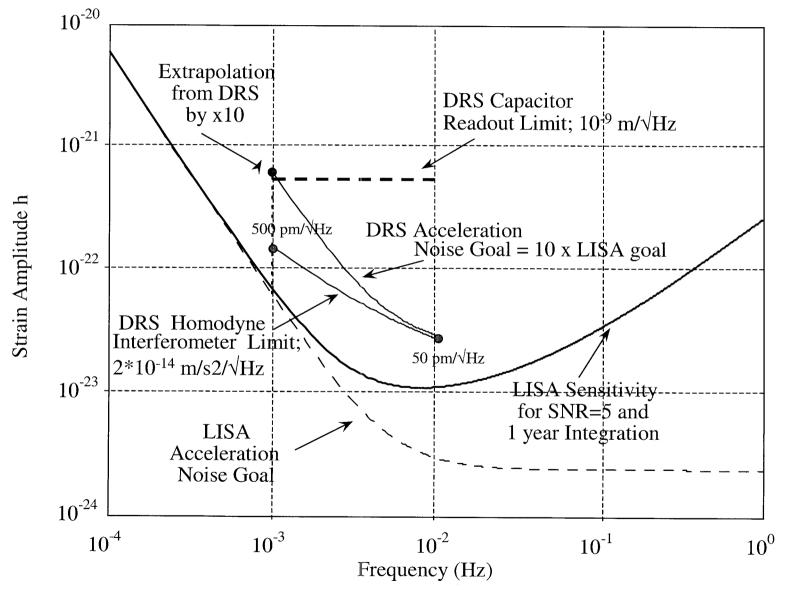
 $50 \text{ pm/}\sqrt{\text{Hz}}$

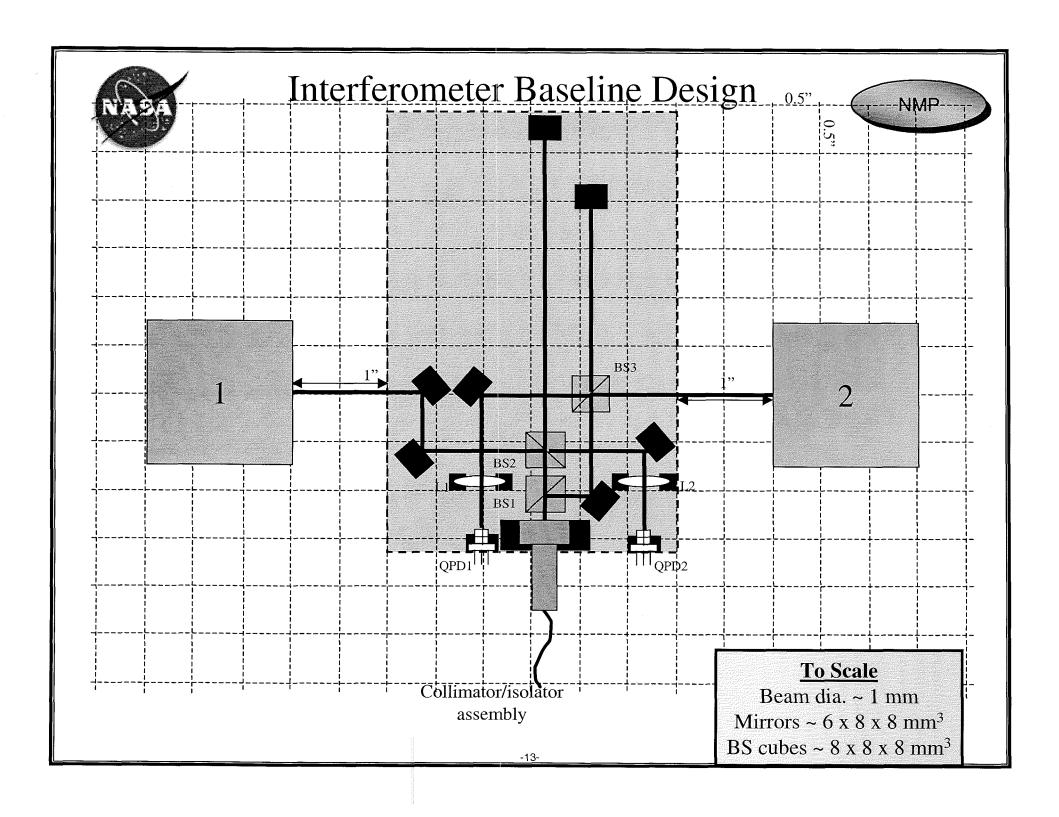
• DRS goal @ 10 mHz:

 $1.5*10^{-13} \text{ m/s}^2/\sqrt{\text{Hz}}$

• $a = (2\pi f)^{2*} \cdot 5*10^{-10} \text{ m/yHz} \sim 2*10^{-14} \text{ m/s}^{2}/\text{vHz} @ 1 \text{ mHz}$

• $a = (2\pi f)^2 * 1*10^{-9} \text{ m/yHz} \sim 4*10^{-14} \text{ m/s}^2/\text{vHz} @ 1 \text{ mHz}$


• $4 * 10^{-12} \text{ m/s}^2/\sqrt{\text{Hz}} @ 10 \text{ mHz}$


• $a = (2\pi f)^2 \times 5 \times 10^{-11} \text{ m/yHz} \sim 2 \times 10^{-13} \text{ m/s}^2/\text{yHz} @ 10 \text{ mHz}$

DRS Performance Limits

Laser Requirements

Average unstabilized laser noise seen: ~5.5 MHz/√Hz @ 10 mHz

 $\sim 30 \text{ MHz/}\sqrt{\text{Hz}} @ 1 \text{ mHz}$

• Interferometer pathlength mismatch: $\Delta L < 1 \text{ mm}$

• Laser noise -> path noise: $\Delta x = \Delta L * \Delta v / v$

@ 10 mHz $< 20 \text{ pm/}\sqrt{\text{Hz (avg.)}}$

@ 1 mHz $< 100 \text{ pm/}\sqrt{\text{Hz (avg.)}}$

Compare to:

• Interferometer noise req'd: 50 pm/√Hz @ 10 mHz

• Interferometer noise req'd: 500 pm/√Hz @ 1 mHz

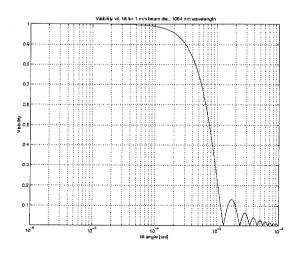
Proof Mass Stability

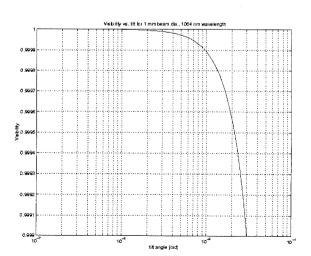
Proof mass pointing stability:

associated displacement error:

1 μ rad/ \sqrt{Hz} @ 1 mHz

TBD


OPD error vs. Fringe Visibility/wavefront tilt



• OPD error due to changing fringe contrast @ max. slope of fringe signal (e.g due to proof mass tip/tilt):

Fringe signal:
$$I = I_0 * (1+V*\sin(4\pi*x/\lambda))$$
 $dI/I_0 = 4\pi V/\lambda * \cos(4\pi*x/\lambda) dx + \sin(4\pi*x/\lambda) dV$ $=> @ x=n*\lambda/4 w/ n = 1,2,3,...(the max. slope of the fringe) $\sin(4\pi*x/\lambda)=0$, i.e. no sensitivity to visibility change dV. Q: How close can we get to that?$

• With $V^2 = [2*J_1(\pi*\theta*D/\lambda)/(\pi*\theta*D/\lambda)]^2$ w/ θ angle between wave fronts, D - 1 mm, $\lambda = 1064$ nm we get a dV~ 10^{-5} (10 ppm) with the 1 µrad/ $\sqrt{\text{Hz}}$ @ 1 mHz proof mass pointing stability.

OPD error vs. Signal (laser) Intensity

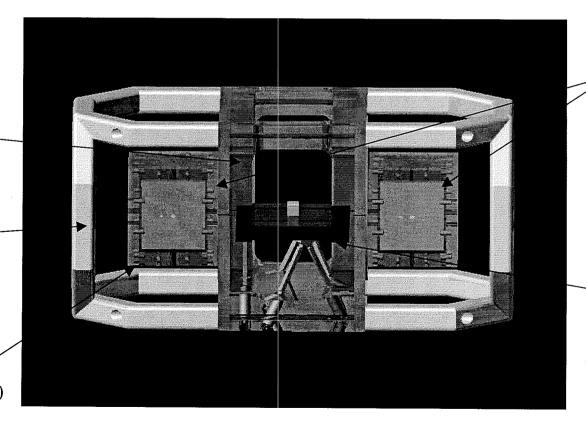
• OPD error due to changing laser intensity I_0 :

$$dI/dI_0 = 1 + \sin(4\pi * x/\lambda) \text{ w/} \qquad \sin(4\pi * x/\lambda) = 0$$
@ $x = n*\lambda/4$

$$dI = dI_0$$

using $dI/I_0 = 4\pi V/\lambda * \cos(4\pi * x/\lambda)*dx$

we get an error of dx = V*20 pm for a signal (laser) intensity change $dI_0 \sim 2*10^{-4}$ @ $x \sim n*\lambda/4$.

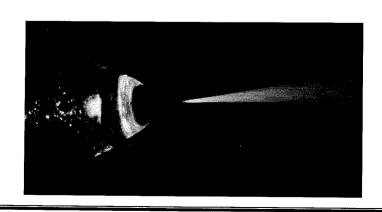

Instrument Configuration

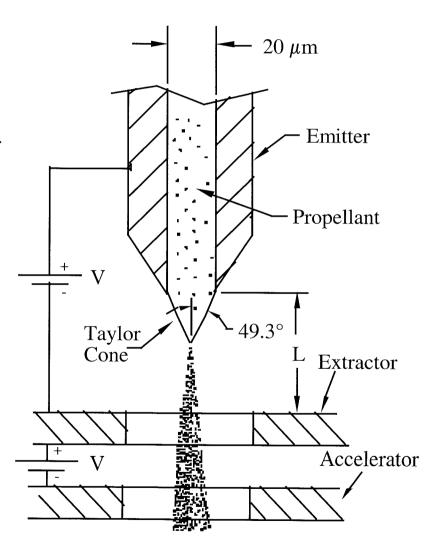
- Two gravitational reference sensors.
- Individual vacuum housings (not shown).
- Sensors integrated with interferometer.

Frame (Connection To Thermal Isolation)

Reference Housing (electrodes)

Test Mass


Interferometer Bench



Microthruster Concept

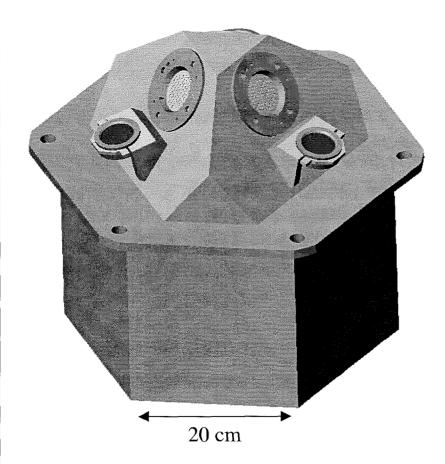
- Colloidal thrusters
 - Fluid fed through fine needle
 - High voltage extracts charged droplets
 - Droplets accelerated by high voltage
 - Thrust control of 0.1 μ N through change of voltage or flow rate
 - Many needles can be combined to develop necessary thrust
 - Proportional thrust control allows precision position control
 - (displacement to thrust feedback loop)

Microthruster Requirements

#	Item	Specification	Comment
1	Thrust	$1-20\mu N$	Smoothly variable between end point values within $0.1\mu N$
2	Thrust controllability/resolution	$0.1 \mu N$	Must be within $\pm 0.1 \mu N$ from set point
3	Thrust noise	$\begin{array}{c} 0.1 \; \mu\text{N}/\!\sqrt{\text{Hz}} \\ \text{from } 10^{\text{-}3} \; \text{Hz} \\ \text{to } 10^{\text{-}2} \; \text{Hz} \end{array}$	Stable over given period
4	Specific impulse	~ 500 sec	May vary depending on thrust
5	Thrust slew rate	< 0.5 μN/sec	Over voltage range/slower with flow
6	System mass	≤ 2 kg	Includes all thruster subsystem
7	Total system power	< 6.2 W	Average/thruster zeolite heater major consumer
8	Total operating time	≥ 2000 hours	90 days mission

Propulsion System Package

- 8 thrusters in 4 clusters
- Continuous/differential operation, authority over 6 DOF


Microthruster Ground Test

- Performance can be characterized in ground tests
 - Thrust levels inferred from beam current (time of flight spectrometry)
 - Torsional thrust stand verifies thrust to sub- μ N levels (also at JPL)
 - Lifetime tests (emitter/electrochemistry and extractor/sputtering)
 - Mission profile simulation tests, life and dynamic response demonstration (thrust commands from simulated spacecraft computer)
 - Beam neutralization and beam profile measurements
 - Input to models to predict behavior in space
 - Contamination tests
 - Limited by back-scatter from test chambers (JPL)

Microthruster Flight/Validation Experiments

- 3 Thrusters Cluster concept
- 2 Thrusters Cluster baselined

- Upon final orbit acquisition place GRS's in accelerometer mode
- Fire one thruster at a time
- Sweep 1 to 20 μN, compute calibration factors
- Hold steady t ≥ 1000 sec. and record thrust noise at 3 levels of thrust
- Validate ground tests (thrust, noise, beam/neutralization)
- Repeat at middle and end of DRS operations